Study offers insights into how to mitigate carbon build-up on catalysts to improve greenhouse gas to energy conversion
Against the backdrop of the energy transition and the fight against climate change, a study published in the journal Angewandte Chemie International Edition offers a key to understanding how to improve the efficiency of processes that convert greenhouse gases into energy resources while reducing the impact of methane and CO2, two greenhouse gases responsible for global warming.
The research team headed by Prof. Matteo Maestri from Politecnico di Milano’s Department of Energy studied dry reforming, a chemical process that converts methane and carbon dioxide, two of the main greenhouse gases, into a synthesis gas that is used both in hydrogen production and in many sectors of the chemical and energy industries. Using supported metal nanoparticles as catalysts, the dry reforming process enables high conversions, accelerating the necessary chemical reactions.
However, one of the main obstacles to a more widespread application of this process is the build-up of carbon on the surface of the catalysts, a phenomenon that reduces their efficiency and makes them less suitable for large-scale use. Using operando Raman spectroscopy, an advanced technique that allows catalysts to be studied in real time during chemical reactions, the team discovered that the gradual formation of carbon is closely related to the ratio of carbon dioxide (CO2) to methane (CH4) present in the reaction.
“Our work allowed us to observe how a catalyst transforms during the reaction,” explains Prof. Matteo Maestri from the Department of Energy at Politecnico di Milano. “Knowing this will help us improve the efficiency of catalysts, with a potentially significant impact on the reduction of greenhouse gas emissions and long-term energy sustainability.”
The possibility of preventing or mitigating carbon build-up on catalysts paves the way for longer-lasting and more efficient technologies based on this reaction, offering new solutions for the use of CO2 biogas.
More information:
Riccardo Colombo et al, Surface Carbon Formation and its Impact on Methane Dry Reforming Kinetics on Rhodium‐Based Catalysts by Operando Raman Spectroscopy, Angewandte Chemie International Edition (2024). DOI: 10.1002/anie.202408668
Citation:
Study offers insights into how to mitigate carbon build-up on catalysts to improve greenhouse gas to energy conversion (2024, October 22)
retrieved 23 October 2024
from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.
#Study #offers #insights #mitigate #carbon #buildup #catalysts #improve #greenhouse #gas #energy #conversion